EERSTE DEELTENTAMEN WISB 212

Analyse in Meer Variabelen

17-04-2007 14-17 uur

Zet uw naam en collegekaartnummer op elk blad alsmede het totaal aantal ingeleverde bladzij-
den.

De verschillende onderdelen van het vraagstuk zijn zoveel als mogelijk is, onafhankelijk van
elkaar. Indien u een bepaald onderdeel niet of slechts ten dele kunt maken, mag u de resultaten
daaruit gebruiken bij het maken van de volgende onderdelen. Raak dus niet ontmoedigd indien
het u niet lukt een bepaald onderdeel te maken en ga gewoon door.

Bij dit tentamen mogen boeken, syllabi, aantekeningen en/of rekenmachine NIET worden ge-

bruikt.
De vier vraagstukken tellen ieder voor 25% van het totaalcijfer.

Het tentamen telt VIER bladzijden.



Exercise 0.1 (Laplacian of composition of norm and linear mapping). For x and y € R", recall
that (z, y) = x' y where ! denotes the transpose of the column vector z € R™; and furthermore, that
lz|| = /(x, z). Fix A € Lin(R™, RP) and recall ker A = { x € R" | Ax = 0 }. Now define

f:R"kerA —R by f=1l°A, ie. f(z) = || Az||; and set f(z) = f(z)2
(i) Give an argument without computations that f is a positive C'°° function.

(i) By application of the chain rule to f2 show, for z € R™ \ ker A and h € R",
y app

(Azx, Ah)
Df(x)h = ———+
@h =50
Deduce that
1
Df(x) € Lin(R",R) is given by Df(x) = mxt A A,
Denote by (eq, ..., e,) the standard basis vectors in R".

(iii) For 1 < 5 < n, derive from part (ii) that

(Az, Aej)
f(z)

_ [[Aej|?  (Az, Aej)®

Djf(x) = and deduce Djzf(x) =7 ()

Asusual, write A =3, D]2- for the Laplace operator acting in R™ and ||AH%ucl =Y 1<j<n 14€; 2.

(iv) Now demonstrate HAHQ HAxHQ _ HAt A.73”2
A(l-[lo A)(a) = =Bl

(v) Which form takes the preceding identity if A equals the identity mapping in R"™?

Exercise 0.2 (Application of Implicit Function Theorem). Suppose that f : R x R — Risa C*
function and that there exists a C'™° function g : R — R satisfying

g(0)#0 and  f(z;0)=wg(x) (v €R).
Consider the equation f(x;y) = ¢, where x and t € R, while y € R".

(i) Prove the existence of an open neighborhood V' of 0 in R™ x R and of a unique C*° function
1V — R such that, for all (y,t) € V

P(0)=0 and  f(¥(y,t);y) =t

(i1) Establish the following formulae, where D1 and D5 denote differentiation with respect to the
variables in R™ and R, respectively:

1 1
—lef(O;O) and  Dyp(0) = —

Dy3(0) = g9(0)



Exercise 0.3 (Quintic diffeomorphism). Recall that Ry = {z € R | 2 > 0 } and define

®:R2->R2 by Ox)= (F,23).

(i) Prove that ® is a C*° mapping and that det D®(z) = 5, for all z € R?.

(i1) Verify that ¢ is a C*° diffeomorphism and that its inverse is given by

. 2, L1 1
iR - RL with  W(y) = (1iy)5(y7,u3).
Compute det DU(y), forally € R?.
Let @ > 0 and define

g:R* =R by g(x) = 23 + 25 — ba(z122)?.

Now consider the bounded open sets

U={zeR%|g(x)<0} and V={yeRZ|y +y»<5a}.

Then U has a curved boundary, while V' is an isosceles rectangular triangle.

(iii) Show that g o ¥(y) = (y1y2)%(y1 + y2 — 5a), for all y € Ri. Deduce that the restriction
Uy, : V — U is a diffeomorphism.

Background. By means of parts (ii) and (iii) one immediately computes the area of U to be %

Exercise 0.4 (Quintic analog of Descartes’ folium). Let g : R?> — R be the function from Exerci-
se 0.3 and denote by F' the zero-set of g (see the curve in the illustration above).

(i) Prove that F is a C°° submanifold in R? of dimension 1 at every point of '\ {0}.

(i) By means of intersection with lines through 0 obtain the following parametrization of a part of
F:

Sat?
¢:R\{-1} > R? satisfying  o(t) = ﬁ( 1 )
(iii) Compute that o) — Sat ( 9 _ 3¢5 )
T4\ t(3—2t%) )
Show that ¢ is an immersion except at 0.

(iv) Demonstrate that F is not a C° submanifold in R? of dimension 1 at 0.



The remainder is for extra credit and is no part of the regular exam. For |z5| small, x5 is negligible;
hence, after division by the common factor x? the equation g(z) = 0 takes the form 23 = 5ax3, which
is the equation of an ordinary cusp. This suggests that ' has a cusp at 0.

(v) Prove that F' actually possesses two cusps at 0. This can be done with simple calculations; if
necessary, however, one may use without proof

5 = 10a ( 610 — 18° + 1 )
T (143 (310 — 195+ 3) /)

S = - 30a ( 5t4(2t10 — 16t° + 7) )
T (A4+)A 4 1T +13) -1 )



Solution of Exercise 0.1

(i) The function /- : ] 0,00 — R is of class C*°. Hence, f is the composition of C'* functions,
therefore the assertion follows from the chain rule.

(i) f2(z) = (z, =) implies Df?(x)h = 2(Ax, Ah) according to Corollary 2.4.3.(ii). Hence the
desired formula follows from 2 (z) Df(z)h = Df?(x)h = 2(Ax, Ah) on account of the chain
rule. Furthermore

_ (Az, Ah) 1 )t :th t
Df(x)h = @ @) (Ax)" Ah @) At Ah.
<A.T, A€j>

f(z)

Application of Corollary 2.4.3.(iii) and (ii) as well as part (ii) implies

(ii1) We have
Djf(z) = Df(z)e; =

[ Aejl*  (Az, Ae;)®
f(x) fix)

Djf(z) = D(D;f)(w)ej =

(iv) Summation of the preceding identity for j running from 1 to n and (Az, Ae;) = (A’ Az, e;)
gives

M@= Y D@ =5 3 el - oy

1<j<n 1<j<n

Z (A* Az, e;)?.

1<j<n

Furthermore, note that, for all y € R",

> e =] 3 wee = Il

1<j<n 1<j<n

(v) In this case we obtain A(|| - ||)(x) = 2=, for 2 € R\ {0} (compare with Exercise 2.40.(iii)).

&3

Solution of Exercise 0.2

(i) Define F: R x R" x R — R by F(x;y,t) = f(x;y) — t. Then F is a C* function satisfying

F0:0,0)= f(0:0)=0  and  DyF(0:0,0) = - (@gle) = 9(0) £0.

The desired conclusion now follows from the Implicit Function Theorem 3.5.1.

(i1) Furthermore on account of the aforementioned theorem we obtain

Dy (y,t) = —DoF(4b(y, t);y,t) " 0 Dy oy F(¥(y, 1); 9, 1).

In particular, this is valid for (¢(y, t);y,t) = (0;0,0). We have
1
D(yﬂf)F(O; 0,0) = (Dyf(0;0),—1) and so D(0,0) = —m(le(O; 0),-1),

and this leads to the desired formulae.



Solution of Exercise (0.3

(1) @ is a composition of C'*° mappings. We have

s(3) ()
Z2 x2

Dd(z) = and so det D®(z) =9 —4 =5.

3 2
20 ()
1 1

3 3
(i1) Given arbitrary y € R?2, consider the equation ¢(x) = y forx € R? ; then i—é =y and % = Y.
Multiplication and division of these equalities leads to

T1T2 = Y192 and (

1
T1\5 5
—1) Sy So T1T2 = Y192 and — = y—ll,
X2 Y2 €2 ng

and multiplication of the equalities now gives 27 = ylg yQ% . Accordingly, z1 = ylg y2§ = (y1y2) z ylé
because x1, y1 and yo € R. Similarly, we obtain the desired formula for xo. It follows that ®
and W are each other’s inverses. On R%r the mapping V¥ is of class C'°*°, which implies that ® is a
C® diffeomorphism. From part (i) and the multiplicative property of the determinant we obtain
det D¥(y) = 1.

(iii) We find

2
5

90 U(y) = (y12)*(y1 + y2) — Ba(y1y2)® (1192)5 = (1y2)* (Y1 + yo — 5a).

This implies * = W(y) € U if and only if g(z) = (y1y2)*(y1 + y2 — 5a) < 0 if and only
y1 +y2 —5a < Oifand onlyify € V.

Solution of Exercise 0.4

(i) We have
Dg(z) = 5(z1 (23 — 2ax3), x2(xs — 2az?)).

This matrix is of rank 1 unless (a) z = 0 or (b) 9::15 = ang and x% = 2ax%. In case (b) we may
assume = # 0 and we also obtain 2 = 8a32§ = 32a°x{, that is, 2} = (2a)®, which holds if and
only if 71 = 2a. In turn this implies x5 = 2a, but g(2a,2a) = 64a® — 80a® = —16a° < 0; in
other words, (2a,2a) ¢ F. It follows that g is submersive at every point of F'\ {0}. The desired
conclusion follows from the Submersion Theorem 4.5.2.(ii).

(ii) We eliminate xo from the equations g(z) = 0 and zo = tx1, for fixed ¢ € R. This leads to
1+ t5)x? = 5at2x‘11, with solutions ;1 = 0 (as was to be expected) or 1 = fit;, thus the
desired formula for ¢ holds.

(iii) The formula for ¢’ is a consequence of

, 5a 2t (1 +t°) — 2 5t Sat 2+ 2t5 — 5¢°
¢(t):ﬁ( 2 5\ 43 4):ﬁ< 5_ 5)
(1+15)2\ 3t2(1 +t°) — t35¢ (1+5)2\ ¢(3 + 3> — 5t5)

If t # 0, then the assumption ¢'(t) = 0 implies 2 — 3t> = 0 and 3 — 2t = 0. This gives
9t> = 6 = 4¢P, that is 5t° = 0, and so arrived at a contradiction. Therefore ¢'(t) £ 0if t #£ 0,
hence ¢'(t) is of rank 1, which proves that ¢ is everywhere immersive except at 0.



(iv)

)

F has self-intersection at 0 as follows from lim; .+ ¢(t) = 0 = ¢(0). Indeed, ¢:R\{-1} —
R? with ¢(u) = ¢(1) also defines a parametrization of F. Now ¢(t) approaches 0 in a vertical

direction as ¢ | 0, while ¢(u) approaches 0 in a horizontal direction as u | 0.

Select tg > 0 sufficiently small, that is, suppose 2 — 3t(5) > (0and 3 — 2t8 > 0. For ¢ running from
—1 to tg, the sign of the first component (2 — 3t°) of ¢/(t) changes from negative to positive at
t = 0, whereas the sign of the second component #?(3 — 2¢) remains nonnegative and vanishes
for t = 0 only. This behavior of ¢’ near 0 is characteristic for a vertical cusp of F' at 0. Mutatis
mutandis, the same argument applied to 5 gives the existence of a second, horizontal, cusp of F'
at 0. Alternatively, it follows that

¢"(0) = 10a< é ) and  ¢"(0) = 30a< (1) )

According to Definition 5.3.9 this implies the existence of an ordinary cusp of F' at 0.



