EERSTE DEELTENTAMEN WISB 212

Analyse in Meer Variabelen

17-04-2007 14-17 uur

- Zet uw naam en collegekaartnummer op elk blad alsmede het totaal aantal ingeleverde bladzijden.
- De verschillende onderdelen van het vraagstuk zijn zoveel als mogelijk is, onafhankelijk van elkaar. Indien u een bepaald onderdeel niet of slechts ten dele kunt maken, mag u de resultaten daaruit gebruiken bij het maken van de volgende onderdelen. Raak dus niet ontmoedigd indien het u niet lukt een bepaald onderdeel te maken en ga gewoon door.
- Bij dit tentamen mogen boeken, syllabi, aantekeningen en/of rekenmachine NIET worden gebruikt.
- De vier vraagstukken tellen ieder voor 25% van het totaalcijfer.
- Het tentamen telt VIER bladzijden.

Exercise 0.1 (Laplacian of composition of norm and linear mapping). For x and $y \in \mathbf{R}^{n}$, recall that $\langle x, y\rangle=x^{t} y$ where x^{t} denotes the transpose of the column vector $x \in \mathbf{R}^{n}$; and furthermore, that $\|x\|=\sqrt{\langle x, x\rangle}$. Fix $A \in \operatorname{Lin}\left(\mathbf{R}^{n}, \mathbf{R}^{p}\right)$ and recall ker $A=\left\{x \in \mathbf{R}^{n} \mid A x=0\right\}$. Now define
$f: \mathbf{R}^{n} \backslash \operatorname{ker} A \rightarrow \mathbf{R} \quad$ by $\quad f=\|\cdot\| \circ A, \quad$ i.e. $\quad f(x)=\|A x\| ; \quad$ and set $\quad f^{2}(x)=f(x)^{2}$.
(i) Give an argument without computations that f is a positive C^{∞} function.
(ii) By application of the chain rule to f^{2} show, for $x \in \mathbf{R}^{n} \backslash \operatorname{ker} A$ and $h \in \mathbf{R}^{n}$,

$$
D f(x) h=\frac{\langle A x, A h\rangle}{f(x)}
$$

Deduce that

$$
D f(x) \in \operatorname{Lin}\left(\mathbf{R}^{n}, \mathbf{R}\right) \quad \text { is given by } \quad D f(x)=\frac{1}{f(x)} x^{t} A^{t} A
$$

Denote by $\left(e_{1}, \ldots, e_{n}\right)$ the standard basis vectors in \mathbf{R}^{n}.
(iii) For $1 \leq j \leq n$, derive from part (ii) that

$$
D_{j} f(x)=\frac{\left\langle A x, A e_{j}\right\rangle}{f(x)} \quad \text { and deduce } \quad D_{j}^{2} f(x)=\frac{\left\|A e_{j}\right\|^{2}}{f(x)}-\frac{\left\langle A x, A e_{j}\right\rangle^{2}}{f^{3}(x)}
$$

As usual, write $\Delta=\sum_{1 \leq j \leq n} D_{j}^{2}$ for the Laplace operator acting in \mathbf{R}^{n} and $\|A\|_{\text {Eucl }}^{2}=\sum_{1 \leq j \leq n}\left\|A e_{j}\right\|^{2}$.
(iv) Now demonstrate

$$
\Delta(\|\cdot\| \circ A)(x)=\frac{\|A\|_{\mathrm{Eucl}}^{2}\|A x\|^{2}-\left\|A^{t} A x\right\|^{2}}{\|A x\|^{3}}
$$

(v) Which form takes the preceding identity if A equals the identity mapping in \mathbf{R}^{n} ?

Exercise 0.2 (Application of Implicit Function Theorem). Suppose that $f: \mathbf{R} \times \mathbf{R}^{n} \rightarrow \mathbf{R}$ is a C^{∞} function and that there exists a C^{∞} function $g: \mathbf{R} \rightarrow \mathbf{R}$ satisfying

$$
g(0) \neq 0 \quad \text { and } \quad f(x ; 0)=x g(x) \quad(x \in \mathbf{R})
$$

Consider the equation $f(x ; y)=t$, where x and $t \in \mathbf{R}$, while $y \in \mathbf{R}^{n}$.
(i) Prove the existence of an open neighborhood V of 0 in $\mathbf{R}^{n} \times \mathbf{R}$ and of a unique C^{∞} function $\psi: V \rightarrow \mathbf{R}$ such that, for all $(y, t) \in V$

$$
\psi(0)=0 \quad \text { and } \quad f(\psi(y, t) ; y)=t
$$

(ii) Establish the following formulae, where D_{1} and D_{2} denote differentiation with respect to the variables in \mathbf{R}^{n} and \mathbf{R}, respectively:

$$
D_{1} \psi(0)=-\frac{1}{g(0)} D_{1} f(0 ; 0) \quad \text { and } \quad D_{2} \psi(0)=\frac{1}{g(0)}
$$

Exercise 0.3 (Quintic diffeomorphism). Recall that $\mathbf{R}_{+}=\{x \in \mathbf{R} \mid x>0\}$ and define

$$
\Phi: \mathbf{R}_{+}^{2} \rightarrow \mathbf{R}_{+}^{2} \quad \text { by } \quad \Phi(x)=\frac{1}{\left(x_{1} x_{2}\right)^{2}}\left(x_{1}^{5}, x_{2}^{5}\right)
$$

(i) Prove that Φ is a C^{∞} mapping and that $\operatorname{det} D \Phi(x)=5$, for all $x \in \mathbf{R}_{+}^{2}$.
(ii) Verify that Φ is a C^{∞} diffeomorphism and that its inverse is given by

$$
\Psi: \mathbf{R}_{+}^{2} \rightarrow \mathbf{R}_{+}^{2} \quad \text { with } \quad \Psi(y)=\left(y_{1} y_{2}\right)^{\frac{2}{5}}\left(y_{1}^{\frac{1}{5}}, y_{2}^{\frac{1}{5}}\right)
$$

Compute $\operatorname{det} D \Psi(y)$, for all $y \in \mathbf{R}_{+}^{2}$.
Let $a>0$ and define

$$
g: \mathbf{R}^{2} \rightarrow \mathbf{R} \quad \text { by } \quad g(x)=x_{1}^{5}+x_{2}^{5}-5 a\left(x_{1} x_{2}\right)^{2}
$$

Now consider the bounded open sets

$$
U=\left\{x \in \mathbf{R}_{+}^{2} \mid g(x)<0\right\} \quad \text { and } \quad V=\left\{y \in \mathbf{R}_{+}^{2} \mid y_{1}+y_{2}<5 a\right\}
$$

Then U has a curved boundary, while V is an isosceles rectangular triangle.

(iii) Show that $g \circ \Psi(y)=\left(y_{1} y_{2}\right)^{2}\left(y_{1}+y_{2}-5 a\right)$, for all $y \in \mathbf{R}_{+}^{2}$. Deduce that the restriction $\left.\Psi\right|_{V}: V \rightarrow U$ is a diffeomorphism.

Background. By means of parts (ii) and (iii) one immediately computes the area of U to be $\frac{5 a^{2}}{2}$.

Exercise 0.4 (Quintic analog of Descartes' folium). Let $g: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be the function from Exercise 0.3 and denote by F the zero-set of g (see the curve in the illustration above).
(i) Prove that F is a C^{∞} submanifold in \mathbf{R}^{2} of dimension 1 at every point of $F \backslash\{0\}$.
(ii) By means of intersection with lines through 0 obtain the following parametrization of a part of F :

$$
\phi: \mathbf{R} \backslash\{-1\} \rightarrow \mathbf{R}^{2} \quad \text { satisfying } \quad \phi(t)=\frac{5 a t^{2}}{1+t^{5}}\binom{1}{t}
$$

(iii) Compute that

$$
\phi^{\prime}(t)=\frac{5 a t}{\left(1+t^{5}\right)^{2}}\binom{2-3 t^{5}}{t\left(3-2 t^{5}\right)}
$$

Show that ϕ is an immersion except at 0 .
(iv) Demonstrate that F is not a C^{∞} submanifold in \mathbf{R}^{2} of dimension 1 at 0 .

The remainder is for extra credit and is no part of the regular exam. For $\left|x_{2}\right|$ small, x_{2}^{5} is negligible; hence, after division by the common factor x_{1}^{2} the equation $g(x)=0$ takes the form $x_{1}^{3}=5 a x_{2}^{2}$, which is the equation of an ordinary cusp. This suggests that F has a cusp at 0 .
(v) Prove that F actually possesses two cusps at 0 . This can be done with simple calculations; if necessary, however, one may use without proof

$$
\begin{aligned}
\phi^{\prime \prime}(t) & =\frac{10 a}{\left(1+t^{5}\right)^{3}}\binom{6 t^{10}-18 t^{5}+1}{t\left(3 t^{10}-19 t^{5}+3\right)} \\
\phi^{\prime \prime \prime}(t) & =-\frac{30 a}{\left(1+t^{5}\right)^{4}}\binom{5 t^{4}\left(2 t^{10}-16 t^{5}+7\right)}{4 t^{5}\left(t^{10}-17 t^{5}+13\right)-1} .
\end{aligned}
$$

Solution of Exercise 0.1

(i) The function $\sqrt{\cdot}:] 0, \infty\left[\rightarrow \mathbf{R}\right.$ is of class C^{∞}. Hence, f is the composition of C^{∞} functions, therefore the assertion follows from the chain rule.
(ii) $f^{2}(x)=\langle x, x\rangle$ implies $D f^{2}(x) h=2\langle A x, A h\rangle$ according to Corollary 2.4.3.(ii). Hence the desired formula follows from $2 f(x) D f(x) h=D f^{2}(x) h=2\langle A x, A h\rangle$ on account of the chain rule. Furthermore

$$
D f(x) h=\frac{\langle A x, A h\rangle}{f(x)}=\frac{1}{f(x)}(A x)^{t} A h=\frac{1}{f(x)} x^{t} A^{t} A h
$$

(iii) We have

$$
D_{j} f(x)=D f(x) e_{j}=\frac{\left\langle A x, A e_{j}\right\rangle}{f(x)}
$$

Application of Corollary 2.4.3.(iii) and (ii) as well as part (ii) implies

$$
D_{j}^{2} f(x)=D\left(D_{j} f\right)(x) e_{j}=\frac{\left\|A e_{j}\right\|^{2}}{f(x)}-\frac{\left\langle A x, A e_{j}\right\rangle^{2}}{f^{3}(x)}
$$

(iv) Summation of the preceding identity for j running from 1 to n and $\left\langle A x, A e_{j}\right\rangle=\left\langle A^{t} A x, e_{j}\right\rangle$ gives

$$
\Delta f(x)=\sum_{1 \leq j \leq n} D_{j}^{2} f(x)=\frac{1}{f(x)} \sum_{1 \leq j \leq n}\left\|A e_{j}\right\|^{2}-\frac{1}{f^{3}(x)} \sum_{1 \leq j \leq n}\left\langle A^{t} A x, e_{j}\right\rangle^{2}
$$

Furthermore, note that, for all $y \in \mathbf{R}^{n}$,

$$
\sum_{1 \leq j \leq n}\left\langle y, e_{j}\right\rangle^{2}=\left\|\sum_{1 \leq j \leq n}\left\langle y, e_{j}\right\rangle e_{j}\right\|^{2}=\|y\|^{2}
$$

(v) In this case we obtain $\Delta(\|\cdot\|)(x)=\frac{n-1}{\|x\|}$, for $x \in \mathbf{R}^{n} \backslash\{0\}$ (compare with Exercise 2.40.(iii)).

Solution of Exercise 0.2

(i) Define $F: \mathbf{R} \times \mathbf{R}^{n} \times \mathbf{R} \rightarrow \mathbf{R}$ by $F(x ; y, t)=f(x ; y)-t$. Then F is a C^{∞} function satisfying

$$
F(0 ; 0,0)=f(0 ; 0)=0 \quad \text { and } \quad D_{1} F(0 ; 0,0)=\left.\frac{d}{d x}\right|_{x=0}(x g(x))=g(0) \neq 0
$$

The desired conclusion now follows from the Implicit Function Theorem 3.5.1.
(ii) Furthermore on account of the aforementioned theorem we obtain

$$
D \psi(y, t)=-D_{x} F(\psi(y, t) ; y, t)^{-1} \circ D_{(y, t)} F(\psi(y, t) ; y, t)
$$

In particular, this is valid for $(\psi(y, t) ; y, t)=(0 ; 0,0)$. We have

$$
D_{(y, t)} F(0 ; 0,0)=\left(D_{y} f(0 ; 0),-1\right) \quad \text { and so } \quad D \psi(0,0)=-\frac{1}{g(0)}\left(D_{1} f(0 ; 0),-1\right)
$$

and this leads to the desired formulae.

Solution of Exercise 0.3

(i) Φ is a composition of C^{∞} mappings. We have

$$
D \Phi(x)=\left(\begin{array}{cc}
3\left(\frac{x_{1}}{x_{2}}\right)^{2} & -2\left(\frac{x_{1}}{x_{2}}\right)^{3} \\
-2\left(\frac{x_{2}}{x_{1}}\right)^{3} & 3\left(\frac{x_{2}}{x_{1}}\right)^{2}
\end{array}\right) \quad \text { and so } \quad \operatorname{det} D \Phi(x)=9-4=5
$$

(ii) Given arbitrary $y \in \mathbf{R}_{+}^{2}$, consider the equation $\Phi(x)=y$ for $x \in \mathbf{R}_{+}^{2}$; then $\frac{x_{1}^{3}}{x_{2}^{2}}=y_{1}$ and $\frac{x_{2}^{3}}{x_{1}^{2}}=y_{2}$. Multiplication and division of these equalities leads to

$$
x_{1} x_{2}=y_{1} y_{2} \quad \text { and } \quad\left(\frac{x_{1}}{x_{2}}\right)^{5}=\frac{y_{1}}{y_{2}} . \quad \text { So } \quad x_{1} x_{2}=y_{1} y_{2} \quad \text { and } \quad \frac{x_{1}}{x_{2}}=\frac{y_{1}^{\frac{1}{5}}}{y_{2}^{\frac{1}{5}}}
$$

and multiplication of the equalities now gives $x_{1}^{2}=y_{1}^{\frac{6}{5}} y_{2}^{\frac{4}{5}}$. Accordingly, $x_{1}=y_{1}^{\frac{3}{5}} y_{2}^{\frac{2}{5}}=\left(y_{1} y_{2}\right)^{\frac{2}{5}} y_{1}^{\frac{1}{5}}$ because x_{1}, y_{1} and $y_{2} \in \mathbf{R}_{+}$. Similarly, we obtain the desired formula for x_{2}. It follows that Φ and Ψ are each other's inverses. On \mathbf{R}_{+}^{2} the mapping Ψ is of class C^{∞}, which implies that Φ is a C^{∞} diffeomorphism. From part (i) and the multiplicative property of the determinant we obtain $\operatorname{det} D \Psi(y)=\frac{1}{5}$.
(iii) We find

$$
g \circ \Psi(y)=\left(y_{1} y_{2}\right)^{2}\left(y_{1}+y_{2}\right)-5 a\left(y_{1} y_{2}\right)^{\frac{8}{5}}\left(y_{1} y_{2}\right)^{\frac{2}{5}}=\left(y_{1} y_{2}\right)^{2}\left(y_{1}+y_{2}-5 a\right)
$$

This implies $x=\Psi(y) \in U$ if and only if $g(x)=\left(y_{1} y_{2}\right)^{2}\left(y_{1}+y_{2}-5 a\right)<0$ if and only $y_{1}+y_{2}-5 a<0$ if and only if $y \in V$.

Solution of Exercise 0.4

(i) We have

$$
D g(x)=5\left(x_{1}\left(x_{1}^{3}-2 a x_{2}^{2}\right), x_{2}\left(x_{2}^{3}-2 a x_{1}^{2}\right)\right)
$$

This matrix is of rank 1 unless (a) $x=0$ or (b) $x_{1}^{3}=2 a x_{2}^{2}$ and $x_{2}^{3}=2 a x_{1}^{2}$. In case (b) we may assume $x \neq 0$ and we also obtain $x_{1}^{9}=8 a^{3} x_{2}^{6}=32 a^{5} x_{1}^{4}$, that is, $x_{1}^{5}=(2 a)^{5}$, which holds if and only if $x_{1}=2 a$. In turn this implies $x_{2}=2 a$, but $g(2 a, 2 a)=64 a^{5}-80 a^{5}=-16 a^{5}<0$; in other words, $(2 a, 2 a) \notin F$. It follows that g is submersive at every point of $F \backslash\{0\}$. The desired conclusion follows from the Submersion Theorem 4.5.2.(ii).
(ii) We eliminate x_{2} from the equations $g(x)=0$ and $x_{2}=t x_{1}$, for fixed $t \in \mathbf{R}$. This leads to $\left(1+t^{5}\right) x_{1}^{5}=5 a t^{2} x_{1}^{4}$, with solutions $x_{1}=0$ (as was to be expected) or $x_{1}=\frac{5 a t^{2}}{1+t^{5}}$; thus the desired formula for ϕ holds.
(iii) The formula for ϕ^{\prime} is a consequence of

$$
\phi^{\prime}(t)=\frac{5 a}{\left(1+t^{5}\right)^{2}}\binom{2 t\left(1+t^{5}\right)-t^{2} 5 t^{4}}{3 t^{2}\left(1+t^{5}\right)-t^{3} 5 t^{4}}=\frac{5 a t}{\left(1+t^{5}\right)^{2}}\binom{2+2 t^{5}-5 t^{5}}{t\left(3+3 t^{5}-5 t^{5}\right)}
$$

If $t \neq 0$, then the assumption $\phi^{\prime}(t)=0$ implies $2-3 t^{5}=0$ and $3-2 t^{5}=0$. This gives $9 t^{5}=6=4 t^{5}$, that is $5 t^{5}=0$, and so arrived at a contradiction. Therefore $\phi^{\prime}(t) \neq 0$ if $t \neq 0$; hence $\phi^{\prime}(t)$ is of rank 1 , which proves that ϕ is everywhere immersive except at 0 .
(iv) F has self-intersection at 0 as follows from $\lim _{t \rightarrow \pm \infty} \phi(t)=0=\phi(0)$. Indeed, $\widetilde{\phi}: \mathbf{R} \backslash\{-1\} \rightarrow$ \mathbf{R}^{2} with $\widetilde{\phi}(u)=\phi\left(\frac{1}{u}\right)$ also defines a parametrization of F. Now $\phi(t)$ approaches 0 in a vertical direction as $t \downarrow 0$, while $\widetilde{\phi}(u)$ approaches 0 in a horizontal direction as $u \downarrow 0$.
(v) Select $t_{0}>0$ sufficiently small, that is, suppose $2-3 t_{0}^{5}>0$ and $3-2 t_{0}^{5}>0$. For t running from -1 to t_{0}, the sign of the first component $t\left(2-3 t^{5}\right)$ of $\phi^{\prime}(t)$ changes from negative to positive at $t=0$, whereas the sign of the second component $t^{2}\left(3-2 t^{5}\right)$ remains nonnegative and vanishes for $t=0$ only. This behavior of ϕ^{\prime} near 0 is characteristic for a vertical cusp of F at 0 . Mutatis mutandis, the same argument applied to $\widetilde{\phi}$ gives the existence of a second, horizontal, cusp of F at 0 . Alternatively, it follows that

$$
\phi^{\prime \prime}(0)=10 a\binom{1}{0} \quad \text { and } \quad \phi^{\prime \prime \prime}(0)=30 a\binom{0}{1} .
$$

According to Definition 5.3.9 this implies the existence of an ordinary cusp of F at 0 .

